M2 internship: Reinforcement learning techniques for Multi-agent path finding with imperfect information

Jilles Dibangoye, Ocan Sankur, François Schwarzentruber

September 26, 2022

In missions such as search and rescue, nuclear plant decommissioning, automated farming, it is convenient to use several agents (robots, UAVs). The core problem is called multi-agent path finding, in which each agent starts in an initial position and has to reach a final target position, without colliding with the other agents. We face the issues of cooperation in a imperfect information setting. The problem has been partially defined in [QSS21], where uncertainty on the map is considered. In this setting, agents start moving in the graph but they are uncertain about the presence of some of the edges. They discover the presence or absence of these edges as they move in the graph, and communicate this information with each other in order to build an optimal execution. Figure 1 shows a graph where nodes are positions; the edges marked with ? represent the initial uncertainty of the agents.

![Graph](image)

Figure 1: Graph of a given environment.

As shown in [QSS21], the problem is algorithmically challenging. As the agents need to adapt their strategies to the environment, it is natural to consider reinforcement learning (RL) for solving the multi-agent path finding.

In this M2 internship, we will design RL solutions for multi-agent path finding in the imperfect information case. We will gradually augment the level of difficulty.

1. First we will study the simplest setting in which all agents perfectly and instantly communicate. The sole source of uncertainty is the outcome of an action. We will directly use standard techniques from [SB98].

2. Second, we will introduce delay in the communication (see [SOV08] and [OS12]).

3. Finally, we will challenge the uncertainty on the map as proposed in [QSS21]. For that, we will use techniques from [DABC16] and [BDM+18].

The M2 internship will be located in Irisa, Rennes and will be co-supervised by Jilles Dibangoye (INSA Lyon), Ocan Sankur (IRISA), François Schwarzentruber (IRISA).

This internship can lead to a PhD funded by the ANR project epiRL (epistemic reinforcement learning).

References


